An angiogenic role for the α5β1 integrin in promoting endothelial cell proliferation during cerebral hypoxia.
نویسندگان
چکیده
Fibronectin is a critical regulator of vascular modelling, both in development and in the adult. In the hypoxic adult central nervous system (CNS), fibronectin is induced on angiogenic vessels, and endothelial cells show strong induction of the two fibronectin receptors α5β1 and αvβ3 integrins. In a previous study, we found that the αvβ3 integrin is dispensable for hypoxic-induced cerebral angiogenesis, but a role for the endothelial α5β1 integrin was suggested. To directly investigate the role of endothelial α5 integrin in cerebral angiogenesis, wild-type mice and mice lacking α5 integrin expression in endothelial cells (α5-EC-KO) were subject to hypoxia (8% O(2)) for 0, 2, 4, 7 or 14 days. Quantification of cerebral vessel density and endothelial-specific proteins claudin-5 and Glut-1 revealed that α5-EC-KO mice displayed an attenuated angiogenic response, which correlated with delayed endothelial proliferation. α5-EC-KO mice showed no defect in the ability to organize a cerebrovascular fibronectin matrix, and no compensatory increase in vascular αvβ3 integrin expression. Consistent with these findings, primary α5KO brain endothelial cells (BEC) in culture exhibited delayed growth and proliferation. Taken together, these studies demonstrate an important angiogenic role for the α5β1 integrin in promoting BEC proliferation in response to cerebral hypoxia.
منابع مشابه
Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra.
Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS ...
متن کاملRole of v3 integrin in the activation of vascular endothelial growth factor receptor2
Interaction between integrin αvβ3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrinmediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction...
متن کاملAutocrine fibronectin directs matrix assembly and crosstalk between cell-matrix and cell-cell adhesion in vascular endothelial cells.
Cellular fibronectin (cFN) variants harboring extra FN type 3 repeats, namely extra domains B and A, are major constituents of the extracellular matrix around newly forming blood vessels during development and angiogenesis. Their expression is induced by angiogenic stimuli and their assembly into fibrillar arrays is driven by cell-generated tension at α5β1 integrin-based adhesions. Here, we exa...
متن کاملMelanoma topology reveals a stem-like phenotype that promotes angiogenesis
Tumor angiogenesis provides critical nutrients for cancer progression and may also facilitate pathways for dissemination during the process of metastasis. It is well established that cells that metastasize display characteristics of stem cells; however, the prevailing paradigm points to these stem-like cells residing in the hypoxic niche within the tumor interior. Controlling the geometry at th...
متن کاملAnti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 237 1 شماره
صفحات -
تاریخ انتشار 2012